Energy Contraction and Optimal Convergence of Adaptive Iterative Linearized Finite Element Methods

نویسندگان

چکیده

Abstract We revisit a unified methodology for the iterative solution of nonlinear equations in Hilbert spaces. Our key observation is that general approach from [P. Heid and T. P. Wihler, Adaptive linearization Galerkin methods problems, Math. Comp. 89 2020, 326, 2707–2734; On convergence adaptive linearized methods, Calcolo 57 Paper No. 24] satisfies an energy contraction property context (abstract) strongly monotone problems. This property, turn, crucial ingredient recent analysis [G. Gantner, A. Haberl, D. Praetorius S. Schimanko, Rate optimality finite element with respect to overall computational costs, preprint 2020]. In particular, we deduce (AILFEMs) lead full linear optimal algebraic rates degrees freedom as well total time.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Adaptive Finite Element Methods

Title of dissertation: CONVERGENCE OF ADAPTIVE FINITE ELEMENT METHODS Khamron Mekchay, Doctor of Philosophy, 2005 Dissertation directed by: Professor Ricardo H. Nochetto Department of Mathematics We develop adaptive finite element methods (AFEMs) for elliptic problems, and prove their convergence, based on ideas introduced by Dörfler [7], and Morin, Nochetto, and Siebert [15, 16]. We first stud...

متن کامل

Adaptive Finite Element Methods for Optimal Control

We develop a new approach towards error control and adaptivity for nite element discretizations in optimization problems governed by partial diierential equations. Using the Lagrangian formalism the goal is to compute stationary points of the rst-order necessary opti-mality conditions. The mesh adaptation is driven by residual-based a posteriori error estimates derived by duality arguments. Thi...

متن کامل

Convergence and optimality of adaptive mixed finite element methods

The convergence and optimality of adaptive mixed finite element methods for the Poisson equation are established in this paper. The main difficulty for mixed finite element methods is the lack of minimization principle and thus the failure of orthogonality. A quasi-orthogonality property is proved using the fact that the error is orthogonal to the divergence free subspace, while the part of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational methods in applied mathematics

سال: 2021

ISSN: ['1609-4840', '1609-9389']

DOI: https://doi.org/10.1515/cmam-2021-0025